Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Signal Transduct Target Ther ; 8(1): 170, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2292813

RESUMEN

Currently, the incidence and fatality rate of SARS-CoV-2 remain continually high worldwide. COVID-19 patients infected with SARS-CoV-2 exhibited decreased type I interferon (IFN-I) signal, along with limited activation of antiviral immune responses as well as enhanced viral infectivity. Dramatic progresses have been made in revealing the multiple strategies employed by SARS-CoV-2 in impairing canonical RNA sensing pathways. However, it remains to be determined about the SARS-CoV-2 antagonism of cGAS-mediated activation of IFN responses during infection. In the current study, we figure out that SARS-CoV-2 infection leads to the accumulation of released mitochondria DNA (mtDNA), which in turn triggers cGAS to activate IFN-I signaling. As countermeasures, SARS-CoV-2 nucleocapsid (N) protein restricts the DNA recognition capacity of cGAS to impair cGAS-induced IFN-I signaling. Mechanically, N protein disrupts the assembly of cGAS with its co-factor G3BP1 by undergoing DNA-induced liquid-liquid phase separation (LLPS), subsequently impairs the double-strand DNA (dsDNA) detection ability of cGAS. Taken together, our findings unravel a novel antagonistic strategy by which SARS-CoV-2 reduces DNA-triggered IFN-I pathway through interfering with cGAS-DNA phase separation.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Proteínas de la Nucleocápside/genética , SARS-CoV-2/genética , ADN Helicasas/genética , COVID-19/genética , ARN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , ADN , Interferón Tipo I/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo
2.
Molecules ; 28(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2306412

RESUMEN

3C proteases (3Cpros) of picornaviruses and 3C-like proteases (3CLpros) of coronaviruses and caliciviruses represent a group of structurally and functionally related viral proteases that play pleiotropic roles in supporting the viral life cycle and subverting host antiviral responses. The design and screening for 3C/3CLpro inhibitors may contribute to the development broad-spectrum antiviral therapeutics against viral diseases related to these three families. However, current screening strategies cannot simultaneously assess a compound's cytotoxicity and its impact on enzymatic activity and protease-mediated physiological processes. The viral induction of stress granules (SGs) in host cells acts as an important antiviral stress response by blocking viral translation and stimulating the host immune response. Most of these viruses have evolved 3C/3CLpro-mediated cleavage of SG core protein G3BP1 to counteract SG formation and disrupt the host defense. Yet, there are no SG-based strategies screening for 3C/3CLpro inhibitors. Here, we developed a fluorescence resonance energy transfer (FRET) and SG dual-based system to screen for 3C/3CLpro inhibitors in living cells. We took advantage of FRET to evaluate the protease activity of poliovirus (PV) 3Cpro and live-monitor cellular SG dynamics to cross-verify its effect on the host antiviral response. Our drug screen uncovered a novel role of Telaprevir and Trifluridine as inhibitors of PV 3Cpro. Moreover, Telaprevir and Trifluridine also modulated 3Cpro-mediated physiological processes, including the cleavage of host proteins, inhibition of the innate immune response, and consequent facilitation of viral replication. Taken together, the FRET and SG dual-based system exhibits a promising potential in the screening for inhibitors of viral proteases that cleave G3BP1.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Inhibidores de Proteasa Viral , Humanos , ADN Helicasas/metabolismo , Trifluridina , Gránulos de Estrés , Proteínas Virales/metabolismo , ARN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Antivirales/farmacología , Inhibidores de Proteasas/farmacología
3.
Viruses ; 15(2)2023 02 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2264534

RESUMEN

Viruses depend on host cellular resources to replicate. Interaction between viral and host proteins is essential for the pathogens to ward off immune responses as well as for virus propagation within the infected cells. While different viruses employ unique strategies to interact with diverse sets of host proteins, the multifunctional RNA-binding protein G3BP1 is one of the common targets for many viruses. G3BP1 controls several key cellular processes, including mRNA stability, translation, and immune responses. G3BP1 also serves as the central hub for the protein-protein and protein-RNA interactions within a class of biomolecular condensates called stress granules (SGs) during stress conditions, including viral infection. Increasing evidence suggests that viruses utilize distinct strategies to modulate G3BP1 function-either by degradation, sequestration, or redistribution-and control the viral life cycle positively and negatively. In this review, we summarize the pro-viral and anti-viral roles of G3BP1 during infection among different viral families.


Asunto(s)
Antivirales , ADN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN
4.
Antiviral Res ; 211: 105550, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2220438

RESUMEN

Host-oriented antiviral therapeutics are promising treatment options to combat COVID-19 and its emerging variants. However, relatively little is known about the cellular proteins hijacked by SARS-CoV-2 for its replication. Here we show that SARS-CoV-2 induces expression and cytoplasmic translocation of the nucleolar protein, nucleolin (NCL). NCL interacts with SARS-CoV-2 viral proteins and co-localizes with N-protein in the nucleolus and in stress granules. Knockdown of NCL decreases the stress granule component G3BP1, viral replication and improved survival of infected host cells. NCL mediates viral-induced apoptosis and stress response via p53. SARS-CoV-2 increases NCL expression and nucleolar size and number in lungs of infected hamsters. Inhibition of NCL with the aptamer AS-1411 decreases viral replication and apoptosis of infected cells. These results suggest nucleolin as a suitable target for anti-COVID therapies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , ADN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas/metabolismo , Fosfoproteínas/metabolismo , Apoptosis , Replicación Viral
5.
PLoS Pathog ; 18(12): e1011041, 2022 12.
Artículo en Inglés | MEDLINE | ID: covidwho-2197181

RESUMEN

Stress granules (SGs) are cytoplasmic condensates that often form as part of the cellular antiviral response. Despite the growing interest in understanding the interplay between SGs and other biological condensates and viral replication, the role of SG formation during coronavirus infection remains poorly understood. Several proteins from different coronaviruses have been shown to suppress SG formation upon overexpression, but there are only a handful of studies analyzing SG formation in coronavirus-infected cells. To better understand SG inhibition by coronaviruses, we analyzed SG formation during infection with the human common cold coronavirus OC43 (HCoV-OC43) and the pandemic SARS-CoV2. We did not observe SG induction in infected cells and both viruses inhibited eukaryotic translation initiation factor 2α (eIF2α) phosphorylation and SG formation induced by exogenous stress. Furthermore, in SARS-CoV2 infected cells we observed a sharp decrease in the levels of SG-nucleating protein G3BP1. Ectopic overexpression of nucleocapsid (N) and non-structural protein 1 (Nsp1) from both HCoV-OC43 and SARS-CoV2 inhibited SG formation. The Nsp1 proteins of both viruses inhibited arsenite-induced eIF2α phosphorylation, and the Nsp1 of SARS-CoV2 alone was sufficient to cause a decrease in G3BP1 levels. This phenotype was dependent on the depletion of cytoplasmic mRNA mediated by Nsp1 and associated with nuclear accumulation of the SG-nucleating protein TIAR. To test the role of G3BP1 in coronavirus replication, we infected cells overexpressing EGFP-tagged G3BP1 with HCoV-OC43 and observed a significant decrease in virus replication compared to control cells expressing EGFP. The antiviral role of G3BP1 and the existence of multiple SG suppression mechanisms that are conserved between HCoV-OC43 and SARS-CoV2 suggest that SG formation may represent an important antiviral host defense that coronaviruses target to ensure efficient replication.


Asunto(s)
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/metabolismo , COVID-19/metabolismo , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Gránulos de Estrés
6.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2051188

RESUMEN

We report that lysosomal damage is a hitherto unknown inducer of stress granule (SG) formation and that the process termed membrane atg8ylation coordinates SG formation with mTOR inactivation during lysosomal stress. SGs were induced by lysosome-damaging agents including SARS-CoV-2ORF3a, Mycobacterium tuberculosis, and proteopathic tau. During damage, mammalian ATG8s directly interacted with the core SG proteins NUFIP2 and G3BP1. Atg8ylation was needed for their recruitment to damaged lysosomes independently of SG condensates whereupon NUFIP2 contributed to mTOR inactivation via the Ragulator-RagA/B complex. Thus, cells employ membrane atg8ylation to control and coordinate SG and mTOR responses to lysosomal damage.


Asunto(s)
Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , ADN Helicasas , ARN Helicasas , Animales , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Gránulos de Estrés , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
7.
Int Immunopharmacol ; 108: 108764, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1899851

RESUMEN

The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 µg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Animales , Chlorocebus aethiops , ADN Helicasas/metabolismo , ADN Helicasas/farmacología , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/farmacología , Virus de la Bronquitis Infecciosa/fisiología , Lignanos , Proteínas de Unión a Poli-ADP-Ribosa , ARN , ARN Helicasas/metabolismo , ARN Helicasas/farmacología , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Células Vero
8.
J Virol ; 96(12): e0041222, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1874504

RESUMEN

SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) and poses a significant threat to global health. N protein (NP), which is a major pathogenic protein among betacoronaviruses, binds to the viral RNA genome to allow viral genome packaging and viral particle release. Recent studies showed that NP antagonizes interferon (IFN) induction and mediates phase separation. Using live SARS-CoV-2 viruses, this study provides solid evidence showing that SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming G3BP1-mediated antiviral innate immunity. G3BP1 conditional knockout mice (g3bp1fl/fL, Sftpc-Cre) exhibit significantly higher lung viral loads after SARS-CoV-2 infection than wild-type mice. Our findings contribute to the growing body of knowledge regarding the pathogenicity of NPSARS-CoV-2 and provide insight into new therapeutics targeting NPSARS-CoV-2. IMPORTANCE In this study, by in vitro assay and live SARS-CoV-2 virus infection, we provide solid evidence that the SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming antiviral innate immunity mediated by G3BP1 in A549 cell lines and G3BP1 conditional knockout mice (g3bp1-cKO) mice, which provide in-depth evidence showing the mechanism underlying NP-related SARS-CoV-2 pathogenesis through G3BPs.


Asunto(s)
COVID-19 , Proteínas de la Nucleocápside de Coronavirus , Proteínas de Unión a Poli-ADP-Ribosa , SARS-CoV-2 , Replicación Viral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , COVID-19/inmunología , COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ADN Helicasas/metabolismo , Interacciones Microbiota-Huesped/inmunología , Ratones , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés , Replicación Viral/genética
9.
J Mol Biol ; 434(9): 167516, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1712817

RESUMEN

Stress granule (SG) formation mediated by Ras GTPase-activating protein-binding protein 1 (G3BP1) constitutes a key obstacle for viral replication, which makes G3BP1 a frequent target for viruses. For instance, the SARS-CoV-2 nucleocapsid (N) protein interacts with G3BP1 directly to suppress SG assembly and promote viral production. However, the molecular basis for the SARS-CoV-2 N - G3BP1 interaction remains elusive. Here we report biochemical and structural analyses of the SARS-CoV-2 N - G3BP1 interaction, revealing differential contributions of various regions of SARS-CoV-2 N to G3BP1 binding. The crystal structure of the NTF2-like domain of G3BP1 (G3BP1NTF2) in complex with a peptide derived from SARS-CoV-2 N (residues 1-25, N1-25) reveals that SARS-CoV-2 N1-25 occupies a conserved surface groove of G3BP1NTF2 via surface complementarity. We show that a φ-x-F (φ, hydrophobic residue) motif constitutes the primary determinant for G3BP1NTF2-targeting proteins, while the flanking sequence underpins diverse secondary interactions. We demonstrate that mutation of key interaction residues of the SARS-CoV-2 N1-25 - G3BP1NTF2 complex leads to disruption of the SARS-CoV-2 N - G3BP1 interaction in vitro. Together, these results provide a molecular basis of the strain-specific interaction between SARS-CoV-2 N and G3BP1, which has important implications for the development of novel therapeutic strategies against SARS-CoV-2 infection.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , Dominios y Motivos de Interacción de Proteínas , ARN Helicasas , SARS-CoV-2 , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , Cristalografía , ADN Helicasas/química , Humanos , Mutación , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química
10.
Nat Commun ; 12(1): 6761, 2021 11 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1526072

RESUMEN

Viral proteins make extensive use of short peptide interaction motifs to hijack cellular host factors. However, most current large-scale methods do not identify this important class of protein-protein interactions. Uncovering peptide mediated interactions provides both a molecular understanding of viral interactions with their host and the foundation for developing novel antiviral reagents. Here we describe a viral peptide discovery approach covering 23 coronavirus strains that provides high resolution information on direct virus-host interactions. We identify 269 peptide-based interactions for 18 coronaviruses including a specific interaction between the human G3BP1/2 proteins and an ΦxFG peptide motif in the SARS-CoV-2 nucleocapsid (N) protein. This interaction supports viral replication and through its ΦxFG motif N rewires the G3BP1/2 interactome to disrupt stress granules. A peptide-based inhibitor disrupting the G3BP1/2-N interaction dampened SARS-CoV-2 infection showing that our results can be directly translated into novel specific antiviral reagents.


Asunto(s)
Factores de Integración del Huésped/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , ADN Helicasas/metabolismo , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/fisiología
11.
FEBS Lett ; 595(23): 2872-2896, 2021 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1516705

RESUMEN

The current work investigated SARS-CoV-2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC-based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress-stimulated NCAP to undergo liquid-liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS-CoV-2 NCAP.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus/metabolismo , Gránulos de Estrés/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , ADN Helicasas/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Gránulos de Estrés/química , Ubiquitina Tiolesterasa/metabolismo , eIF-2 Quinasa/metabolismo
12.
Int J Biol Macromol ; 190: 636-648, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1401500

RESUMEN

SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Tratamiento Farmacológico de COVID-19 , Proteínas de la Nucleocápside de Coronavirus/química , ADN Helicasas/química , Decitabina/química , Mesilato de Imatinib/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas de Unión a Poli-ADP-Ribosa/química , ARN Helicasas/química , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas de Unión al ARN/química , SARS-CoV-2/química , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , COVID-19/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ADN Helicasas/antagonistas & inhibidores , ADN Helicasas/metabolismo , Decitabina/farmacología , Sistemas de Liberación de Medicamentos , Genómica , Mesilato de Imatinib/farmacología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/antagonistas & inhibidores , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , SARS-CoV-2/metabolismo
13.
Nat Commun ; 12(1): 502, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1387327

RESUMEN

The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.


Asunto(s)
COVID-19/virología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas de la Matriz Viral/metabolismo , COVID-19/genética , COVID-19/metabolismo , Membrana Celular/virología , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Unión Proteica , Dominios Proteicos , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Viral/genética , SARS-CoV-2/química , SARS-CoV-2/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
14.
Antiviral Res ; 190: 105064, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1157118

RESUMEN

COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , COVID-19/metabolismo , ARN Helicasas DEAD-box/metabolismo , Animales , COVID-19/virología , Línea Celular , Chlorocebus aethiops , ADN Helicasas , Factor 2 Eucariótico de Iniciación/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteómica/métodos , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , ARN Interferente Pequeño/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/metabolismo , Células Vero , Replicación Viral/fisiología
15.
Arch Med Res ; 52(1): 48-57, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-893598

RESUMEN

BACKGROUND: Ras-GTPase activating protein SH3-domain-binding proteins (G3BP) are a small family of RNA-binding proteins implicated in regulating gene expression. Changes in expression of G3BPs are correlated to several cancers including thyroid, colon, pancreatic and breast cancer. G3BPs are important regulators of stress granule (SG) formation and function. SG are ribonucleoprotein (RNP) particles that respond to cellular stresses to triage mRNA resulting in transcripts being selectively degraded, stored or translated resulting in a change of gene expression which confers a survival response to the cell. These changes in gene expression contribute to the development of drug resistance. Many RNA viruses, including Chikungunya (and potentially Coronavirus), dismantle SG so that the cell cannot respond to the viral infection. Non-structural protein 3 (nsP3), from the Chikungunya virus, has been shown to translocate G3BP away from SG. Interestingly in cancer cells, the formation of SG is correlated to drug-resistance and blocking SG formation has been shown to reestablish the efficacy of the anticancer drug bortezomib. METHODS: Chikungunya nsP3 was transfected into breast cancer cell lines T47D and MCF7 to disrupt SG formation. Changes in the cytotoxicity of bortezomib were measured. RESULTS: Bortezomib cytotoxicity in breast cancer cell lines changed with a 22 fold decrease in its IC50 for T47D and a 7 fold decrease for MCF7 cells. CONCLUSIONS: Chikungunya nsP3 disrupts SG formation. As a result, it increases the cytotoxicity of the FDA approved drug, bortezomib. In addition, the increased cytotoxicity appears to correlate to improved bortezomib selectivity when compared to control cell lines.


Asunto(s)
Bortezomib/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/genética , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Fiebre Chikungunya/metabolismo , Fiebre Chikungunya/patología , Virus Chikungunya/metabolismo , Chlorocebus aethiops , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/patología , ADN Helicasas/genética , Regulación hacia Abajo , Resistencia a Antineoplásicos , Femenino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Transfección , Células Vero , Proteínas no Estructurales Virales/administración & dosificación , Proteínas no Estructurales Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA